

The Gigawatt Gamble

The Economics, Impact, and an Alternative Path for Global Al Inference Deployment

Thomas Sohmers CEO, Positron AI thomas@positron.ai

Introduction

Thomas Sohmers
CEO, Positron AI
thomas@positron.ai

CEO & CoFounder

Principal Hardware Architect

CEO & CoFounder

Student & Entrepreneur

Forbes 30 under 30 2013 Thiel Fellow MIT Researcher

Three things we will cover

1

Are we in an Al bubble?
A brief economics discussion

2

Understanding the coming economic upheaval

3

What are the paths to the future?

Bubble and Economies

SEQUOIA ╚ Al's \$600B Question

The AI bubble is reaching a tipping point. Navigating what comes next will be essential.

> BY <u>DAVID CAHN</u> PUBLISHED JUNE 20, 2024

Are we in a bubble?

My thesis

The economic value of AI isn't transient or a ramp to to a point of required capacity, like the build out of the internet and wired, and wireless connectivity, or the adoption social media. These technology trends had predictable end-limits.

The value of AI fundamentally changes the fundamentals on which the global economy is structured: land, capital & labor. AI will turn labor into a near limitless resource injecting an exponential factor in the basic equations of wealth creation. This in turn will consume capital at unprecedented levels, and will rapidly test the limits of the land (e.g. power & water).

This is not a bubble; it's the leading indicator of the exponential potential of 'free' labor.

(pssst...and the hyperscalers know this.)

AN INQUIRY INTO
THE NATURE AND CAUSES OF

THE WEALTH OF NATIONS

BY

ADAM SMITH

EDITED, WITH AN INTRODUCTION, NOTES, MARGINAL SUMMARY AND AN ENLARGED INDEX

BY

EDWIN CANNAN, M.A., LL.D. PROPESSOR OF POLITICAL ECONOMY IN THE UNIVERSITY OF LONDON

VOLUME I

AN INQUIRY INTO
THE NATURE AND CAUSES OF
THE WEALTH OF NATIONS

BY

ADAM SMITH

EDITED, WITH AN INTRODUCTION, NOTES, MARGINAL SUMMARY AND AN ENLARGED INDEX

BY

EDWIN CANNAN, M.A., LL.D. PROFESSOR OF POLITICAL ECONOMY IN THE UNIVERSITY OF LONDON

VOLUME I

Land

AN INQUIRY INTO
THE NATURE AND CAUSES OF
THE WEALTH OF NATIONS

BY

ADAM SMITH

EDITED, WITH AN INTRODUCTION, NOTES, MARGINAL SUMMARY AND AN ENLARGED INDEX

BY

EDWIN CANNAN, M.A., LL.D. PROPESSOR OF POLITICAL ECONOMY IN THE UNIVERSITY OF LONDON

VOLUME I

Land

Labor

AN INQUIRY INTO
THE NATURE AND CAUSES OF
THE WEALTH OF NATIONS

ADAM SMITH

EDITED, WITH AN INTRODUCTION, NOTES, MARGINAL SUMMARY AND AN ENLARGED INDEX

EDWIN CANNAN, M.A., LL.D. PROPESSOR OF POLITICAL ECONOMY IN THE UNIVERSITY OF LONDON

VOLUME I

2026

Land

Labor

Steam Engine (§)

Capital

AN INQUIRY INTO
THE NATURE AND CAUSES OF
THE WEALTH OF NATIONS

ADAM SMITH

EDITED, WITH AN INTRODUCTION, NOTES, MARGINAL SUMMARY AND AN ENLARGED INDEX

EDWIN CANNAN, M.A., LL.D.
PROPESSOR OF POLITICAL ECONOMY IN THE UNIVERSITY OF LONDON

VOLUME I

The Factors of Production: Land

In 1776, land's value was what could be directly farmed from it, leading to expansion.

Like land expansion, Data Centers are the embodiment of new wealth creation.

New Data centers are being built now but also have limits to expansion, particularly access to power and water.

500MW Google Datacenter (source: Semianalysis)

TSMC Arizona Fab 21 (source: TSMC)

The Factors of Production: Capital

Al Infrastructure spend is expected to hit over **\$200B** *per year* by 2030, with total spend between 2024 and 2030 approaching **\$1T**.

The Manhattan Project, between 1942 and 1946 spent **~\$32B** in 2024 dollars

The Interstate Highway System, between 1956 and 1992, spent ~\$600B in 2024 dollars.

And for some reason analysts expect direct ROI...

The Factors of Production: Labor

Business will very soon have the ability to to spin up 100K expert employees on demand.

It can't be just be the biggest and wealthiest companies who can do this!

"Labour was the first price, the original purchasemoney that was paid for all things. It was not by gold or by silver, but by labour, that all wealth of the world was originally purchased." –Adam Smith

Image Source: LifeArchitect.ai/gpt4-5

Economics Lesson

(Simplified) Cobb-Douglas Production Function:

Output (or Wealth) is created using two main factors: Capital (machines, investments) and Labor.

Our own variant

Output/Wealth = Technology * (Resources * Capital * Labor)

Land / **Natural** Resources

Assets

Humans (Equipment) (...Machines?)

$$W = T * (R * C * L)$$

The Previous Industrial Revolutions

1st Industrial Revolution

Early Mechanized Production + Steam Power

2nd Industrial Revolution

Electrification + Mass Transportation + Long Distance Communication

3rd Industrial Revolution

Digitization + Fiat Currency

4th Industrial Revolution

Emergence of Artificial Intelligence

1780-1880

1880-1980

1980-2020

2020→

Increase in labor through specialization + mechanization

 $W = T_1 * (\mathcal{R} * \mathcal{L} * \mathcal{L})$

Increase in resources through mass extraction

$$W = T_2 * (3R * 2C * 1L)$$

Use of capital re-aligns to the value of information.

Labour shifts to knowledge.

$$W = T_3 * (3R * 3C * 2L)$$

Labour becomes exponential, effectively limitless.

$$W = T_4 * (xR * xC * xL^n)$$

1st order effects we can see in front of us today:

Power consumption

Al based skilled labour; Al writing code

The Consolidation Problem

All other compute 23.5GW

Data source: Semianalysis

The Unpriced Externalities

Global Datacenter Deployments

2024	2030
------	------

H100 Equivalents Deployed	2.25M	135M
Gigawatts Deployed	8.5	144
TWatt/hour Consumed	73	1160
Million Metric tons of CO ₂	51	810

2030 Projected Power Usage Equivalent

160 million homes

~total number of homes in US+CAN

91 billion gallons of gas

~8 months of US gasoline usage

400 billion gallons of water for cooling

equivalent to 4 million households

Why it is totally justified

Llama 3.1 405B can currently replace junior engineers *and/or* augment senior engineers at ~30 tokens per second on 8xH100s

Generation: 30 tokens/sec = ~2.5 million tokens/day = 75 million tokens/month = 900 million tokens a year

Assume 10:1 input to output with \$3/Million Tokens and it only costs a company ~\$30,000/yr for a "Llama employee"

So what is

Positron Facts

- Founded April 2023
- Goal = Change the underlying economics of applied AI, starting immediately with making inference affordable to more people
- \$12M in seed funding
- 18 months from idea to shipping production hardware
- 21 employees
- We're hiring

Arithmetic Intensity

- - 1166 10

Positron high level memory story

Observed MBU for varying batch sizes (Llama v2 70B fp16)

*Higher is better

Tensor parallelism

NVIDIA Source data: Databricks

Positron high level memory story

NVIDIA Source data: Databricks

Positron high level memory story

Roofline Plot: CNN vs Transformer on NVIDIA H100 with 1/3 Memory Bandwidth Case

More density per watt = more economic value

Positron shipping product

Special Thanks to our investors...

PO/ITRON

Come talk to us at Booth 35/36 and Product Demo Stage @ 4:15 today

Backup

Edit Master title style

- Edit Master text styles
 - Second level
 - Third level
 - Fourth level
 - Fifth level

The Previous Industrial Revolutions

First Industrial Revolution Second Industrial Revolution

(Early Mechanized Production (Max

(Mass Transportation +

+ Steam Power)

Long Distance Communication)

land limits reached; size, environmental etc, no more being created, resources constraints over time

Land + Labor +++ Capital ++

Labor goes expenetial tipping point where labour can grow indefinitely

biggest capital outlay so far

D: BCG CONSULTANTS + GPT-4

LLMS: SMARTER THAN WE THINK (JAN/2024)

LifeArchitect.ai/gpt-4-5

The 2028 Problem

Data Center Power Usage in the United States										
	Units	2020	2021	2022	2023	2024	2025	2026	2027	2028
Al Data Center Critical IT Power	MW	318	640	1,102	3,332	8,499	16,356	28,140	41,337	56,280
Non-Al Data Center Critical IT Power	MW	14,231	16,395	18,376	19,221	19,798	21,382	23,520	25,637	27,175
Critical IT Power	MW	14,550	17,035	19,478	22,553	28,297	37,738	51,660	66,974	83,455
Utilization Rate	%	65%	66%	66%	67%	70%	72%	73%	74%	75%
Critical IT Power Consumed	MW	9,505	11,169	12,826	15,159	19,668	26,983	37,800	49,733	62,688
Power Usage Effectiveness (PUE)	Ratio	1.59	1.56	1.53	1.47	1.40	1.34	1.30	1.26	1.22
Data Center Utility Power Consumed	MW	15,142	17,407	19,660	22,323	27,538	36,263	48,957	62,521	76,684
Data Center Actual Power Usage, per year	TWh	133	152	172	196	241	318	429	548	672
As % of United States Power Generation	%	3.3%	3.7%	4.0%	4.5%	5.5%	7.1%	9.5%	12.0%	14.6%

W = Watts. kW = Kilowatts. kWh = Kilowatt-hours. MW = Megawatts. MWh = Megawatt-hours.

