

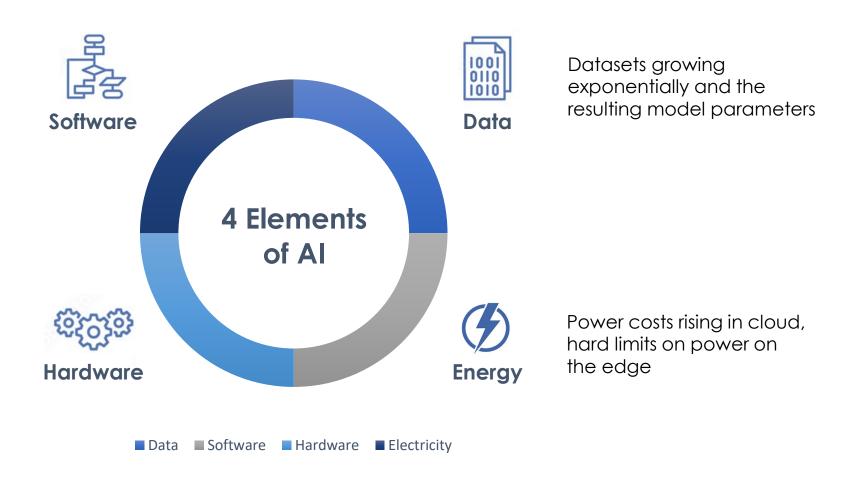
Efficient Models on Efficient Architectures

in AI Hardware & Systems

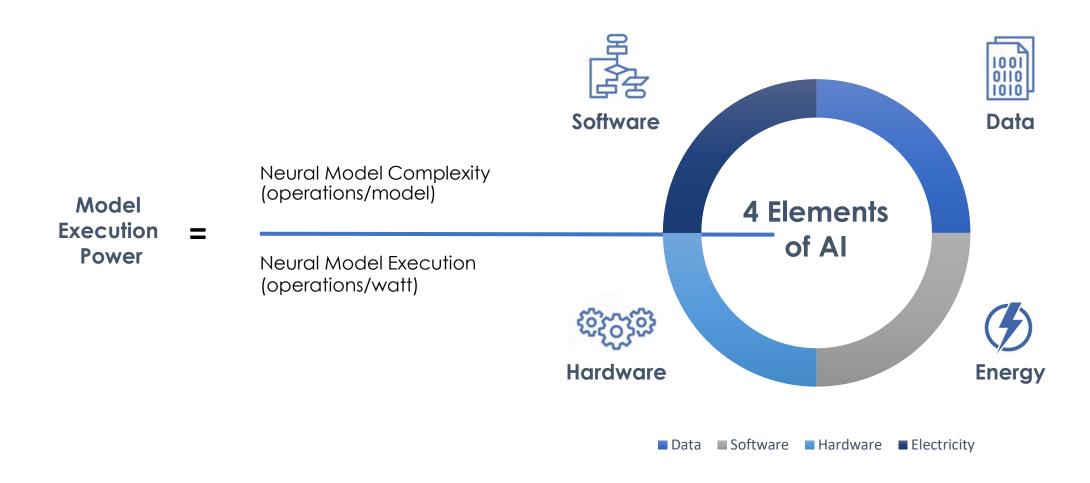
X @aiandsystems

brainchip

4 Elements of Al



The Model Efficiency Equation



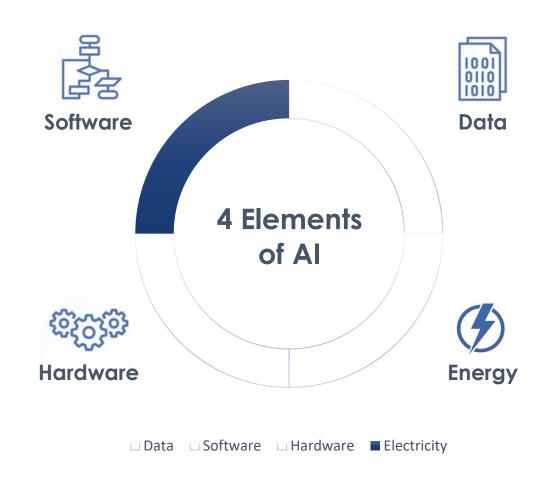
Neural Model Complexity

Using Foundation Models

- * Pruning and distillation
- * Fine tuning
- * Trade off quality versus model size
- * Use smaller context windows
- * RAG Assistance
- More efficient training
 - * Incremental training
 - * Relevant Subset training

New Foundation Models

* New models suited for edge use cases



The Neural Model Efficiency

Model Metric (PESQ, Perplexity, mAP)

MACs/inference (power + area)

Algorithmic Memory Efficiency Model Metric

Parameters (memory movement)

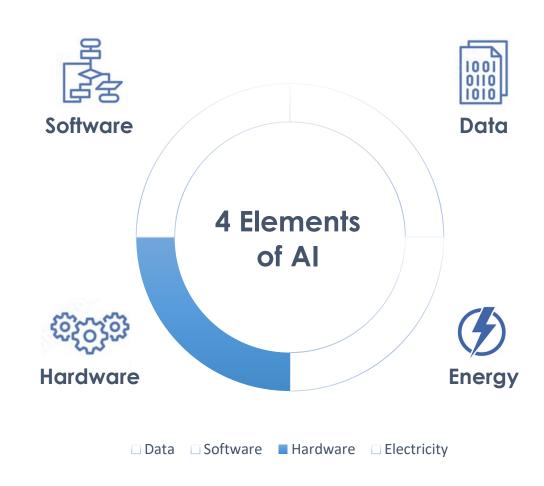
Neural Model Execution

New NPU chip architectures

- * Reduced precision
- * In-memory compute
- * Analog compute
- High sparsity execution
- Efficient scheduling compilers
- Dedicated Transformer accelerators
- Optical
- * Quantum

New silicon

- Smaller process nodes
- Lower voltages
- * Better heat dissipation



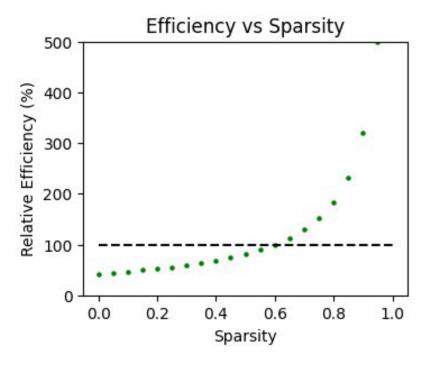
The Compute Efficiency Equation

Compute =

Actual MACs/sec Computed

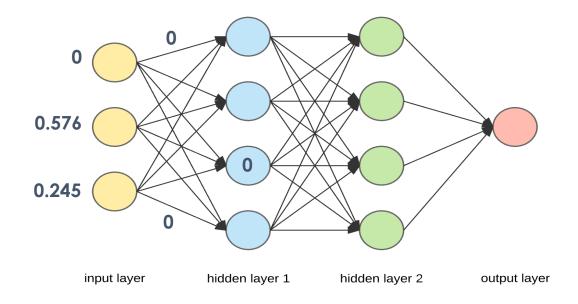
Total MACs/sec Possible

- What percentage of available MACs can be scheduled for a given model
- Take advantage of sparsity to reduce the number of MACs/sec that need to be computed
- At high-sparsity, >100% efficiency when compared to non event-based accelerators



Sparsity

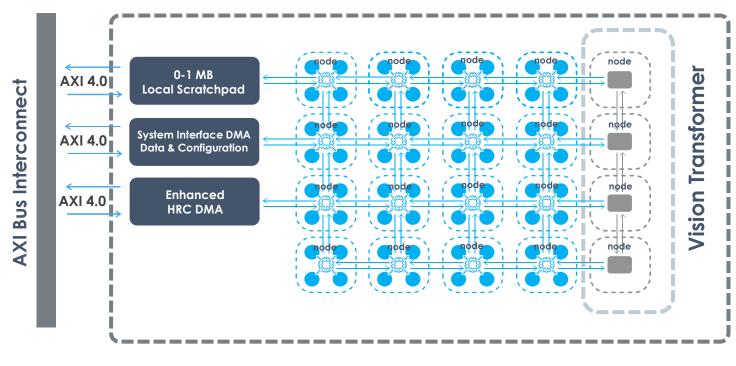
- Weight Sparsity (Model Architecture + Training + HW)
- * Activation Sparsity (Model Architecture + Training + HW)
- Input Event Sparsity (Signal)



Akida Event-Based Computing Platform

Akida2 Key Attributes

- * **Event-based processing** only processes and communicates on events.
- * At-memory compute: Dedicated SRAM for each Neural Processing Engine (NPE) in a mesh-connected array,
- * Quantized parameters and activations: Supports 8, 4, 2-bit parameters and activations
- Scalable, configurable inference platform
- Multi-layer model execution without host
- CNN/RCNN/ViT/SNN/SSM/TENN support
- Digital, event-based, at memory compute



*ViT specialized nodes

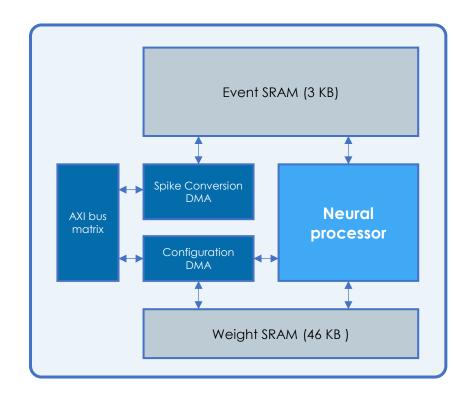
**TENN integrated in all nodes

Akida leverages sparsity in weights and activations to reduce computational complexity

Akida 2 Ultra low power configuration

Key Attributes

- 1<mW operation¹
- * 100 % self managed execution from flash
- * Total core area² = 0.18 mm2 in GF22nm
- Can use in power island for always on/wake up

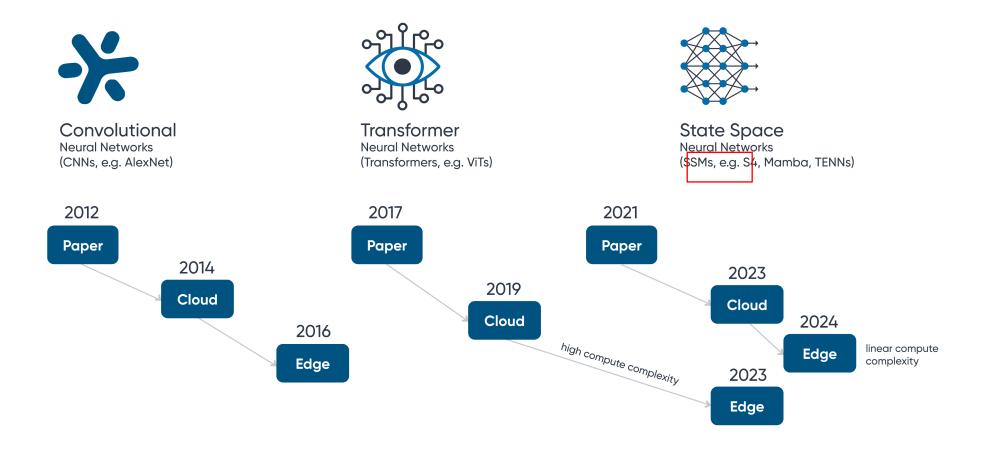


- Power dependent on use case and silicon implementation
- 2 Total core shown with 21KB SRAM, configurable
- 3 Event & Weight SRAM sized for Key Word Spotting

The Trajectory of Models to the Edge

Global Al Trends and Predictions 2010 - 2030

Technology transitions in Al Roadmap



Structured State Space Models

Mamba is the most well known State Space Model (SSM)

Mamba supports LLMs

- Demonstrating much faster inferencing than transformers
- Demonstrating lower latency than transformers
- Improves with longer context windows
- Quality versus Transformers on benchmarks ongoing, see below

Several new versions released

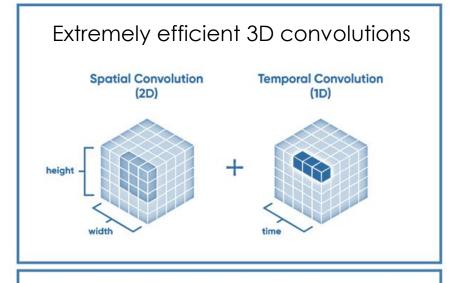
- Mamba-2 a faster version of Mamba
- * Falcon Mamba 7B <u>Technology Innovation Institute (TII)</u> in Abu Dhabi
- ML-Mamba A new multi-modal Model supporting images and text

Is Attention All You Need?

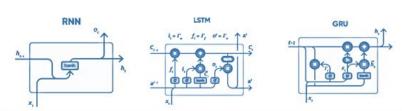
[2312.00752] Mamba: Linear-Time Sequence Modeling with Selective State Spaces (arxiv.org)

A More Efficient Network for the Edge

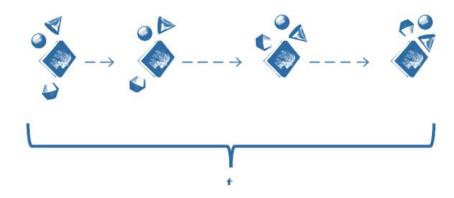
Temporal Event Based Neural Nets (TENN)



TENNs deliver the benefits of and are much more efficient to train than RNNs



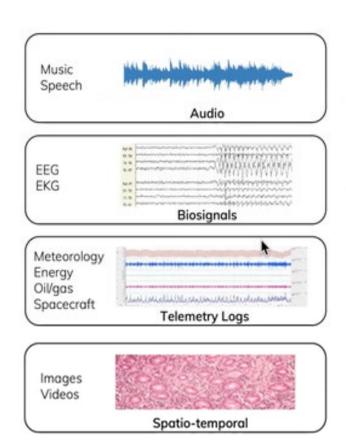
3D Time Series



- Simplifies solution to complex problems
- * Reduces model size and footprint without loss in accuracy
- Easy to train (CNN-like pipeline)

Edge Applications for TENNs

- * Sequence classification and generation in time:
 - * Raw audio classification: keyword spotting
 - * Audio denoising: single mic noise suppression
 - * ASR and GenAI: compressing LLMs
- Sequence prediction algorithms
 - * Healthcare: vital signs estimation
 - * Industrial: vibration prediction
 - * Robotics: Path prediction
 - * Any time-series/sequence prediction problem
- Multi-dimensional streaming video
 - * Video object detection frames are correlated in time.
 - * Action recognition classifying across many frames
 - Video frame prediction path prediction & planning



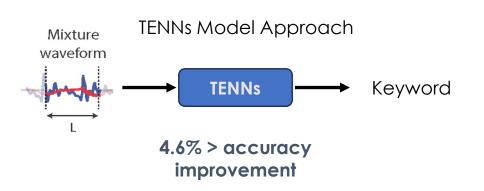
Key Word Spotting on Akida

Key Word
Spotting
Model Power =

1/7X Less MACs 1/3.5X Memory

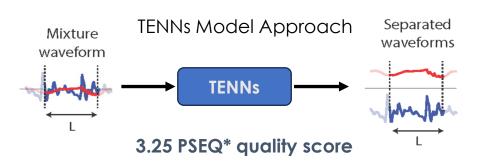
TENNs Vs. DSP/CNN Akida Event-based Ops

Model	Accuracy	Total Memory (KB)	MACs (M/sec)
DS-CNN	92.43%	93.61	128
TENNs Akida	97.02%	26	19
Comparison	+5%	3.5x	7x



Audio Denoising on Akida

- * Audio denoising isolates a voice signal from background noise
- * Traditional approach employs computationally intensive time domain to frequency domain transform and the inverse transform
- * TENNs approach avoids expensive FFT transformations



Note: PESQ score is for a 32fp version of the model

Efficient Models on Efficient Architectures

Goals:

- As few MACs/model inference,
- As little power per effective MAC
- Minimize memory size and movement

Utilize:

- Event-based compute architectures in hardware
- New model algorithms in software
- Model size fits in-memory compute

Visit Us @ Booth #58

https://brainchip.com/wpcontent/uploads/2023/03/BrainChip_second_generation Platform_Brief.pdf

Akida Technology Foundations

Fundamentally different. Extremely efficient.

101 000

Silicon-Proven, Fully Digital Neuromorphic Implementation

Cost-effective, predictable design and implementation

On-chip Learning

One-shot/few-shot learning. Minimizes sensitive data sent. Improves security and privacy

Event-based Hardware Acceleration

Minimized compute and communication - Minimizes host CPU usage

Configurable And Scalable

Extremely configurable and post-silicon flexibility

At-Memory-Compute

Maximum throughput, Lowers latency and system bandwidth usage

Complex Models, High Accuracy

Unique spatial-temporal capabilities, accelerates Vision Transformers.