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•Handles complex
coding tasks 

•Trained on 16K tokens

•Supports 100K input 
context tokens

•Code Llama – Python, 
a language-specialized 
variation of Code Llama, 
further fine-tuned on 
100B tokens of Python 
code



AI has become a system problem

Model parameters have scaled faster than 
compute and memory over the last 5 years

• Compute growth:  ~1/30th

• Memory growth:    ~1/300th 

Compute & memory needs vary by models

 
• Recommenders 10X the size but 1/1000th of 

the FLOPs of LLMs
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LLMs
(Training)

Compute

Large model sizes

Across thousands of GPUs to 
address the compute requirements

3D Parallelism exercises different 
communication primitives
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LLMs
(Inference - Prefill)

Compute
(10PF to 1st token)

Prefill processes many tokens in 
parallel → compute bound

Time to first token <= few sec

Input
context

(history + 
current 

prompt)

~10k tokens

Transformer
Model

10s of GBs

KV cache
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LLMs
(Inference - Decode)

Compute
(GF)

KV cache
The same

Transformer
Model

Output 
token

Decoding processes one output token
at a time in autoregressive manner

Time per output token <= 100s of ms
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LLMs
(Training & Inference )

Compute

Training:
• Large (and growing) model sizes
• Thousands of GPUs to address 

the compute requirements
• 3D Parallelism exercises different 

communication primitives

Inference:
• Diverse requirements between 

prefill (compute bound) and 
decode (memory bound)
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Ranking & Recommendation

Making personalized recommendations 
by ranking previous interactions to 
predict future interests

Leverages giant Deep Learning 
Recommendation Models (DLRMs)
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Ranking & Recommendation
(Combined)

Compute
(GF – 100GF)

• Model size often even bigger than 
LLMs (mostly from embeddings)

• High global bisection bandwidth 
for all-to-all communication

• Model size for inference can be 
reduced by up to ~10x (quantization, 
compression, pruning)

Latency
Sensitivity



High Scale 
Extreme Freshness 
Multi-surface 
Multi-modality

On path to 10s of billions of rows/day 

x
x
x

Signals in seconds
Streaming Features in < a minute
Batch Features in < 1 day
Models in minutes

Reels + Stories + Feed + Shopping
Instagram + Facebook

Reactions + Captions + Comments 
+ Photos + Videos + Audio + AR/VR

Compounding ops complexity
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R&R Training R&R InferenceLLM Inf Prefill LLM Inf DecodeLLM Training

Diversity of AI system
requirements

• Difficult to serve all classes 
of models with a single 
system design point

• New models & parallelism 
techniques put unexpected 
pressures on AI systems

• The next frontier of innovation is in 
software/hardware co-design

Compute
(GF – 10PF)

Latency
Sensitivity
(ms)



Our challenge:
deliver balanced 
systems that 
efficiently serve
all of our models

Models evolving 
quickly along 
divergent paths
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Meta OCP contributions for AI systems



Recapping diverse model requirements

Job Size (GPUs) Scale-up
Network BW

Scale-out
Network BW

Major 
bottleneck

Ranking 10s-100s 0.5 TB/s IO

LLM 8k-16k 1 TB/s 0.05 - 0.1 TB/s Compute



Ranking Training Systems:

Medium-size ”flat fabric” running multiple 
training jobs ("AI cloud")
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2x GPU 
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2x GPU
Servers

~100s of 
training 

jobs

…

Ranking training cluster: ~4K GPUs (2021+)



LLM training Systems: 

Massive amount of compute for one big job

Target for 2023: 20+ ExaFLOPs FP8

→

LLaMa-65B training in <1 day



First LLMs were trained in
FAIR Research Super Cluster: 
InfiniBand cluster of 16K GPU
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TOR 1 TOR 252
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LLM Training: Ethernet cluster for 32K GPUs
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400 Gbps

… …



There are no reference designs in the 
industry, and we are looking forward to 

share our learnings in building large 
clusters – InfiniBand and Ethernet



2D/3D parallelization: 
data + model-parallel 

(tensor + pipeline)

Keep global batch size 
same up to 32K GPUs!

Today's batch size is 2k -
runs out of samples per GPU

Scaling LLM training to 32K GPUs
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LLM Training: Scale-out vs. Scale-up domains
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Model parallelism pushes scale-up networking 
multi-rack:

64-128 GPUs , ~1TB/s

MODEL-PARALLEL DOMAIN
DEMAND: MULTI-SERVER

GPU
Servers 1-2

GPU
Servers 3-4

GPU
Servers 5-6

GPU
Servers 7-8

MODEL-PARALLEL DOMAIN
BEFORE: ONE SERVER



Network is getting "fused" with compute

High-speed, power efficient 
interconnect & endpoints

Scale-up and scale-out becoming 
one fabric in the long-term



Unified DC infrastructure (2025+): LLMs and Ranking

Facility Liquid Cooling 
(high-power racks)

Injection: ~1TB/s
L1 bisection: ~1TB/s
L2 bisection: ~100GB/s

–
Per accelerator
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"Brute-force" compute is not enough: 
model innovation is necessary to keep 

infrastructure efficient

Likely sparse models: MoE, switch 
transformers ...



MTIA v1 - 1st gen “Meta” ranking inference accelerator

Pre-MTIA MTIA v1

INT8 30-45 TOPs 102.4 TOPs

FP16 4-6 TOPs 51.2 TOPs

DDR 16 GB 32 GB (LPDDR)

TDP 12 W 25 W



What’s after MTIA v1?

Optimized for ranking & recommendation

Inference

• ~2x INT8/FP16 in the next chip
• Optimized Perf/TCO at system level
• Native PyTorch eager mode

Training

• Build on inference learnings
• 1TB/s+ IO and non-blocking fabric
• Performant comms and collectives



Ecosystem

Systems

AI @ Meta

Models



Our ongoing commitment to open

2011 2013 2015 20192017 2021 2023
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Collaborating on tools & frameworks

OpenAI Triton: A high-performance programming language that 
enables researchers to write highly-efficient GPU code  

AITemplate:  A unified inference engine for GPUs that delivers near 
hardware-native performance on a variety of models

Linear Linear Linear Linear

Relu Relu

Concat

Split

Relu Relu
Fused

PyTorch: An open-source ML framework that offers flexible and 
efficient deep learning model development

TensorRT-LLM:  A collaboration with NVIDIA and others to accelerate 
and optimize LLM inference on H100 GPUsTensorRT-LLM
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Rapidly-evolving models are creating 
increasingly divergent system 
requirements

Performant infrastructure requires a 
heterogeneous approach

Summary

Developer velocity and efficiency 
requires an abstraction to the 
underlying hardware

Opportunity for step change 
innovation in hardware capabilities 
and sustainability



Thank You!


