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01 Mass AI adoption is bottlenecked

02 Energy efficient AI inference

03 Full-stack optimization for achieving efficiency 

Key Points 
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Electricity is already a huge 
financial and environmental 
burden on data centers

Source: HARTING White Paper (2024)



FuriosaAI Inc.  AI Hardware  Summit 2024

AI  inference will be everywhere.
But is our infrastructure ready?
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“Average server rack 

densities are increasing 

but remain below 8 kW.

The majority of facilities 

do not have racks above 

30 kW, and those that do 

have only a few.”

- Uptime Institute Global Datacenter 

Summary 2024
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What if
there is a more energy efficient AI inference
solutions that can be deployed anywhere 
within existing infrastructure.
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Make AI computing sustainable, 

enabling access to powerful AI 

for everyone on Earth

FuriosaAI’s Mission
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RNGD: Powerfully Efficient AI Inference 
Data center AI accelerator built for the era of LLM 

and other generative AI models
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512 TFLOPS
64 TFLOPS (FP8) x 8 Processing Elements

48 GB
Memory Capacity

256 MB SRAM
384 TB/s On-chip Bandwidth

1.5 TB/s
Memory Bandwidth

150 W TDP
targeting air-cooled data centers

2 x HBM3
CoWoS-S

INT8 (512 TOPS), BF16 (256 TFLOPS),

INT4 (1 POPS), FP8 (512 TFLOPS)

PCIe P2P support For LLMs

Features For Cloud

Multiple-Instance support

Virtualization

Secure boot & model encryption
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Early performance numbers: 

60% higher perf/watt than current inference solutions

RNGD NVIDIA L40S Intel Gaudi 2 Google TPU v5e

Performance
(queries / sec)

11.5
(FP8)

12.3
(FP8)

10.51 2.5

Power
(watt)

185 320 Unknown Unknown

Data source
measured measured MLPerf 3.1 MLPerf 4.0

Disclaimer: As of Aug 2024, unverified by MLPerf

GPT-J 6B MLPerf Benchmark Scenario (99% accuracy)
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Lower total cost of ownership,  
with less energy usage and 
fewer racks. Compatible with 
air-cooled data centers of today

DGX H100

x 1 
server

13,853 
tokens/s

RNGD Server 

x 7
servers 

48,727 
tokens/s

Most data center racks today are below 15kW

data above is for running Llama 3 70 B

3.5x compute per rack
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Beyond hardware
Full-stack innovation and 
optimization for maximized 
efficiency in AI inference
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Model Execution

Serving

Utilization
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Source: “Data  Movement is All You Need,”  
MLSYS’21

Tensor Contraction

Flop analysis for BERT*

Tensor Contraction, The Core Computation in Deep Learning

“Data movement is 
the major bottleneck 
for efficiency”
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“TCP aims at exploiting the rich 
parallelism and data locality 
inherent in tensor contractions, 
thereby enhancing both 
efficiency and performance of 
AI workloads.”

TCP: A Tensor Contraction Processor for AI Workloads

Presented at ISCA: International Symposium on Computer Architecture, 2024

TCP (Tensor Contraction Processor) 

https://furiosa.ai/blog/tensor-contraction-processor-ai-chip-architecture
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Tensor Contraction, not Matmul, as a Primitive

Tensor contraction is declarative

No explicit memory layout for data

No explicit scheduling for computation

Tensor contraction is a higher dimensional 
generalization of matrix multiplication.
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DNN Graph Compiler: End-to-End Model Efficiency

● Optimal memory layout and operation 

scheduling for maximum data 

reusability 

● Temporal pipeline opportunities

● Operator fusion and memory 

allocation, split/merge scheduling

computational 
graph

low-level
operation

low-level
operation

chip

Compute Units

SRAM

partition
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Quantization Becomes More Critical as Model Sizes Grow

Efficiency gains through quantization

● Inference latency

● Computation time

● Memory footprint

● Energy consumption

Computing’s Energy Problem, M. Horowitz, ISSCC, 2014
Slide: Courtesy of Prof. Shao

Energy Consumption
(Numbers are rough approximations for 45nm)

https://ieeexplore.ieee.org/document/6757323
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Furiosa Quantizer: Graph-Based Automated Tool

Furiosa QuantizerEnd-to-end automated quantization

Supports arbitrary customized LLM 

models using graph pattern search

BF16, INT8 Weight-Only (W8A16), 

FP8 (W8A8), INT8 SmoothQuant 

(W8A8), INT4 Weight-Only (W4A16 

AWQ / GPTQ)
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Model Execution

Serving

Utilization
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Generative Inference Basics
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(prompt inference)
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Hi There

What is LLM ?

<PAD> <PAD> Hi

LLM

<EOS>

stands

<EOS> <EOS>

for Large

prompts generated texts in decoding

b
a
t
c
h
 
a
x
i
s

earlier finished

1) Computation/IO waste

2) Memory waste

current sequences

…

…

Challenges of auto-regressive execution in serving

max context length

What is Paged

3) Waiting new requests

Challenges in Generative Model Serving
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Furiosa LLM: High-throughput Serving Engine for LLMs
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KV Block 
Manager

Furiosa Generator Furiosa Runtime

alloc()

Logical KV 
cache blocks

Physical 
memory blocks

…

Furiosa LLM

Blocked KV cache 
Management

High throughput serving with SOTA optimization

● Continuous batching allows immediately starting 

incoming requests when resource is available.

● PagedAttention eliminates compute and IO waste

● Blocked KV cache reduces significantly memory 

wastes

6x Increase in inference performance
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Model Execution

Serving

Utilization
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Spatial Partitioning for Container and VM environment

A single RNGD has 8 Processing Elements (PEs)

An RNGD can be spatially partitioned into many 
individual NPUs
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Spatial Partitioning for Container and VM environment
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A single RNGD has 8 Processing Elements (PEs)

An RNGD can be spatially partitioned into many 
individual NPUs
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Spatial Partitioning for Container and VM environment

NPU:0-1 NPU:2-3

NPU:4-5 NPU:6-7

VM 1 VM 2

V
M

 3

A single RNGD has 8 Processing Elements (PEs)

An RNGD can be spatially partitioned into many 
individual NPUs

Up to 4 PEs can operate together as a single NPU
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Spatial Partitioning for Container and VM environment

NPU 0-3

NPU 4-7

VM 1
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A single RNGD has 8 Processing Elements (PEs)

An RNGD can be spatially partitioned into many 
individual NPUs

Up to 4 PEs can operate together as a single NPU
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Spatial Partitioning for Container and VM environment

NPU 0-3

NPU 4-7

VM 1

V
M

 2

A single RNGD has 8 Processing Elements (PEs)

An RNGD can be spatially partitioned into many 
individual NPUs

Up to 4 PEs can operate together as a single NPU

Furiosa RNGD supports SR-IOV (Single Root IO 
Virtualization) for multiple isolated access from 
VMs
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Furiosa Software Stack 
Key Features 

PyTorch 2.0 integration

Quantization toolkit (FP8, INT8, INT4, ..)

3D model parallelism support

Graph compiler for DNN models

Performance profiling tools

LLM serving framework compatible with vLLM

Kubernetes device plugin and NPU operator

Virtual machine support
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Delivering peak AI performance 
with high efficiency requires

Maximized model efficiency
The RNGD Chip, Compiler, and Furiosa Quantizer deliver peak 

performance with low-precision inference for speed and efficiency.

Enhanced serving capabilities
Boost throughput and reduce latency in production with PagedAttention, 

Blocked KV cache, and continuous batching. 

Flexible resource utilization
RNGD’s spatial partitioning and SR-IOV ensure optimal resource 

allocation, maximizing NPU utilization in virtualized and containerized 

environments.

In summary 
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34

In order to solve for mass AI adoption, 

We have to think beyond just hardware
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