

Beyond the Edge: Revolutionizing AI Workloads with Axelera AI's Digital In-Memory Computing and RISC-V technology

About us

- Co-founded in July 2021, by Fabrizio Del Maffeo and Evangelos Eleftheriou, with 16 founding team members from IBM, ETH Zurich, IMEC, Bitfury AI, Google and Qualcomm.
- Our team has grown to 180+ people, including 60+ PhDs and are present in 16 countries.
- Our first product, Metis, is the most powerful AI processing unit for computer vision, with the best performance/price and efficiency on the market, and in 2025 we will expand our product line to generative AI applications.
- We have been delivering to customers since September 2023. We now have 25+ customers and are moving into mass production in Q4 2024.
- We have raised USD ~120M from leading deep-tech investors, institutions and European sovereign funds.

Our investors include

Our team come from

Opportunity

Retail

Customer flow analysis Inventory management Cashier-less checkouts

Agriculture

Crop health monitoring Automated pest control Agricultural robotics

Industrial

Quality control automation Worker safety monitoring Automated material handling

Security

Traffic control systems Intelligent surveillance Access control systems

Healthcare

Remote patient monitoring Real-time diagnostics tools Surgical tools and equipment

Automotive

Driver assistance systems Autonomous driving systems Pedestrian safety systems

Computer vision at the edge is generating real value across a range of industries **today**

Opportunity

Enterprise server

General purpose systems used to run business applications and services

E.g. Real-time analysis of medical imaging data, like X-rays, MRIs and CT scans

Datacenter

Scalable and flexible resources designed to host and manage vast amounts of data and apps

E.g. inference on image and text generation models (e.g. ChatGPT)

HPC

Designed for complex, computation-intensive tasks, optimized for parallel processing

E.g. simulations, scientific research, weather modeling, large-scale data analysis

But our technology can scale up to address the trillion-dollar industries of **tomorrow** and work across different **computing environments**

Solution

METIS First Gen (2024)

Cards Systems

AI Processing Unit (AIPU)

The most powerful and efficient AI accelerator with our Digital in-Memory **Computing** technology and RISC-V ISA

AI Accelerators Card & Systems

Edge-native hardware powered by an Axelera AIPU to enable instant field installation and faster time-to-market

Voyager SDK

Integrated **AI software stack** designed to simplify application development, optimization and deployment

Metis AIPU

SRAM-based D-IMC

- Interleaved weight-storage and compute units in an extremely dense fashion
- INT8 activations / weights, with INT32 accumulation to maintain full precision
- Immune to noise and memory nonidealities affecting analog IMC precision
- Technology commensurate with CMOS scaling to low lithography nodes

SRAM-based D-IMC

- Stores multiple weight sets in computational memory
 - Enhances IMC storage density
 - Allows accumulation up to 16k inputs
 - Enables simultaneous processing and weight reloading
- Activity gating and clock gating. Maintains high energy efficiency at low utilization
- Ensures full-precision accumulation
 - Negligible accuracy loss compared to FP32
 - Use of post-training quantization;
 no need for retraining

AIPU SoC Architecture

- AI-Core
 - Self-sufficient compute engine for concurrent network execution
- RISC-V system controller
 - Boots chip, interfaces with peripherals, manages AI cores with a real-time OS
- Security module
 - Secure boot and weight/data encryption
- 32 MiByte L2 SRAM
 - 52 MiByte on-chip memory in total
- Interconnected through Network-on-Chip (NoC)
 - 1 Tbit/s bandwidth to shared memories
 - Ensures AI cores will not stall

AI Core | Key Components

- Matrix-Vector Multiplier: D-IMC based
- Data Processing Unit
 - Element-wise vector operations
 - Apply activation functions
- Depth-Wise Processing Unit
 - Depth-wise convolution
 - Pooling and Up-sampling
- Weight Decompression Unit
- 4 MiByte L1 SRAM
- RISC-V control core

AI Core | Operational Model

AI Core

- Dataflow engine: RISC-V controlled
- Dual high-throughput streaming data paths
 - One for MVM
 - One for DWPU
 - Can operate fully in parallel
- Background weight loading
 - Write weights for next operation
 - In parallel with operation
 - Enabled by multiple weight sets
 - On-the-fly weight decompression

Clock & Activity Gating

- Bank gating
 - If all 64 outputs of an IMC bank pair are unused. Entire bank clock gated
- Block gating
 - If block is not used
 - √ Block is clock-gated
 - ✓ Inputs are silenced
- Energy efficiency high
 - Even at low utilization

Throughput & Energy Efficiency

82 TOPS/W under high sparsity conditions at reduced throughput15 TOPS/W for random uniform activations and weights (no sparsity)

Metis AIPU Spec

Peak performance	210 TOPs @ INT8 (0.8 GHz)	
# of AI Cores	4 x AIPU (Int4), Int8 16MB L1 SRAM	
Internal memory	32MB L2 SRAM 200GB/s aggregate BW	
IMC efficiency	15 TOPs/W @ INT8	
External memory	LPDDR4x, 34GB/s	
Communication bus	PCIE 4x Gen3	
Security module	Silex Security IP	
Video decoder	-	
Pre/post-processing	-	
System controller	RISC-V	
Node geometry	TSMC N12	

Performance

^{*} Tera Operations Per Second (TOPS) is a measure of computational performance, and it quantifies the number of trillion operations (such as additions or multiplications) that a processing unit can perform in one second. TOPS presented here are what was reported in official datasheets. Nvidia performance reported as 'Sparse TOPS' (2x 'Dense TOPS')

Performance

Deviation from FP32 accuracy

Metis AIPU performance: Benchmarks

Network	Resolution	Metis AIPU [FPS]	Energy Efficiency [FPS/W]	Accuracy @INT8
ResNet-50	(224x224)	3155 fps	394 fps/W	80.69%* (-0.16)
MobileNet- SSD1	(300x300)	5395 fps	771 fps/W	mAP 25.52+ (-0.21)
YoLoV5m	(640x640)	369 fps	46 fps/W	mAP 44.04+ (-1.09)

^{*}Measured on ImageNet-1000 validation

[†]Measured on COCO detection validation

AI HARDWARE & EDGE AI SUMMIT

Scaling Up | Integrating RISC-V into the datapath

- CVA6: Open-source 64-bit RISC-V core with support for an application-class profile
 - Single-issue, 6-stage, in-order CPU
- Vector Processing Unit (VPU):
 Our proprietary vector extension
 - Builds on the existing RISC-V ISA
 - Vector ISA is agnostic to vector size
 - Enables general compute kernels
 - Flexibility and future-proof

Scaling Up | Design considerations

- Generation Two: Supports multiple high-speed video streams and medium-sized LLMs, e.g., LLAMA-2/3 7/8B or LLAMA-2 13B, to be deployed on edge servers
 - Massively parallel compute
 - Energy-efficient in-memory computing
 - Large on-chip SRAM
 - Massive on-chip bandwidth
 - High-capacity external memory
 - High-Speed External Bandwidth
 - Support for multi-device pipeline parallelism

Scaling Up | Performance

AIPU evolution: From Metis to Generation Two

Network	Speedup vs Axelera METIS	
MobileNetv3	2.9x	
ResNet-50	3.9x	
SSD-MobileNetV1	2.7x	
SSD-ResNet34	3.7x	
YoloV5s	3.8x	
YoloV5m	3.8x	
YoloV8s	5.8x	
PHI3	6.3x > 500 output tokens/s, small batch	
LLAMA3-8B	6.2x > 3000 output tokens/s, large batch	

Scaling initiatives

Our second-generation chip can achieve up to **4x improvement** in performance over Metis based on:

- 1. Moving to a smaller node geometry
- 2. Improving the design of the AI core
- 3. Improving the memory hierarchy
- 4. Doubling the number of AI cores

Interested in learning more?

The products we sell

M.2 AI Acceleration Cards

• Form factor: M.2 2280 M-key

AIPU: 1x Metis AIPU

Peak performance: 100 TOPS

RAM: 2GB of LPDDR4x

Connection: PCIe 3.0 x4

Power spec: Max 15W (typical

7W)

PCIe AI Acceleration Card

• Form factor: PCIe CEM (half or full)

AIPU: 1-4x Metis AIPUs*

Peak performance: 214 - 856 **TOPS**

RAM: 4GB of LPDDR4x

Connection: PCIe 3.0 x4-16*

Power spec: Max 50-200W*

All-in-one AI Systems

• Peak performance: 214 TOPS

Host device types: x86 and

ARM

• Systems: Various

How to reach us

- Meet us here at AIHW Summit
- Reach out by email directly evangelos.eleftheriou@axelera.ai
- Visit our website at axelera.ai and contact our sales team for more information on our products

